Not only are the answers shown here, but pay attention to the form; how the grids were set up. Rearranged formula should be on the left, followed by the work in a grid, then the answer in proper sig digits, finally the units. Neatness counts!

(If you want all of the points, make it easy for me to see them!)

1) \( v_f = 0.3 m/s \quad v_f = 14 m/s \quad t = 6.8 s \)
\[
\frac{v_f - v_i}{t} = a = \frac{14 - 0.3}{6.8} = 2.3 m/s^2
\]

2) \( v_f = 4.20 m/s \quad a = -9.55 m/s^2 \quad d = 3.75 m \)
\[
v_f^2 = v_i^2 + 2ad \Rightarrow v_i^2 = v_f^2 - 2ad = 4.20^2 - 2(-9.55)(3.75) = 4.66 m/s^2
\]

3) \( a = 7.05 m/s^2 \quad t = 2.50 s \quad v_i = 0 m/s \)
\[
d = \frac{1}{2}at^2 = \frac{1}{2} \cdot 7.05 \cdot 2.50^2 = 22.0 m
\]

4) \( a = 9.80 m/s^2 \quad v_f = 15.0 m/s \quad v_i = 0 m/s \)
\[
a = \frac{v_f - v_i}{t} \Rightarrow t = \frac{v_f - v_i}{a} = \frac{15.0 - 0}{9.80} = 1.53 s
\]

5) \( v_i = 14.0 m/s \quad v_f = 25.0 m/s \quad d = 25.0 m \) or 250m
\[
\begin{align*}
v_f^2 &= v_i^2 + 2ad \\
\frac{v_f^2 - v_i^2}{2d} &= a = \frac{(25.0 - 14.0)^2}{2 \cdot 25.0} = 0.955 m/s^2
\end{align*}
\]

6) \( v_i = 15.0 m/s \quad a = 15.0 m/s^2 \quad t = 3.00 s \)
\[
d = v_i t + \frac{1}{2}at^2 = 15.0(3.00) + \frac{1}{2}(15.0)(3.00)^2 = 225 m
\]