When solving circuit diagrams, follow this order of operations to find values.

1) Find the resistance in any parallel sections. \(\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} \ldots \) or \(R_T = (R_1^{-1} + R_2^{-1})^{-1} \)

2) Find the resistance in the total circuit. \(R_T = R_1 + R_2 + R_3 \ldots \) (each parallel section acts like a single resistor for this part)

3) Find the overall current \((A_o) \) in the circuit. \(I = \frac{V}{R} \)
 a) this will be the current at any point in series
 b) current will split at parallel sections

4) Find the voltage drop across each resistor. \(V = I R \)
 a) use the overall current \((A_o) \) in calculations
 b) for a parallel section, use the overall current \((A_o) \) and \(R_T \) for that section, voltage drop in each path of the parallel section is the same

5) Find the current through each path of the parallel sections. \(I = \frac{V}{R} \)
 a) use the voltage drop for that section and the individual resistance of each path

\[
P = V I
\]